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ABSTRACT 

The use of tank reactor (CSTR) type mathematical models is proposed for describing the 
mean internal regimes (reaction zones) of decomposition processes and to relate them to 
TGA plots which exhibit a normal sigmoid, or some particular oscillating overall rate. The 
ordinary differential equations of these models can be solved by standard numerical proce- 
dures for initial value problems. As an example for the description of normal decompositions, 
a CSTR model is discussed which refers to a simple elementary reaction of arbitrary order. 
The multistability of this model may explain the occurrence of different decomposition 
regimes which had been measured for kaolin and for limestone. 

INTRODUCTION 

In order to describe phenomenologically the internal regime, and the 
concentration profiles of decomposition processes with oscillating rates [1,2], 
different systems of partial differential equations (PDEs) have been pro- 
posed [3,4]. Of course, these equations can also be used to describe quasista- 
tionary processes leading to normal sigmoid overall rates exhibited in many 
TGA plots. Here, an approach is developed which uses a compartment 
description of the samples and bases on systems of ordinary differential 
equations (ODES). Mathematical models of this type are similar to the 
thermodynamics of irreversible processes in discontinuous systems [5,6], and 
the theory of chemical reactors [7,8]. Their basis is to take the reaction 
zones, i.e. reactive phase boundaries, or sections of them, as the bulk of 
homogeneous tank reactors (CSTRs). 

This procedure seems very promising from both theoretical and practical 
points of view. To see this, one should take into consideration that compart- 
ment models including CSTRs can well be adapted to various situations, 
and that the computational techniques for solving dynamic problems of 
nonlinear ODES is much more developed than for solving problems of 
nonlinear PDEs. 

The most general model of the compartment type would be a cascade of 
coupled homogeneous tank reactors. The ODE systems of such CSTRs 
systems can have many qualitatively different sets of solutions (trajectories) 
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describing the time evolution of processes. This fact provides a number of 
different aspects to the explanation of thermal decomposition reactions. If it 
is assumed that a compartment modelling is correct, then, except for the 
above mentioned processes with self-oscillating rates, even chaotic variations 
of rates could be expected as another possible result of TGA measurements. 
Quasistationary states of the CSTR models which slowly vary with time 
would have to be connected with the normal decomposition reactions 
leading to sigmoid overall gas evolution curves. In this line, the multistabil- 
ity of the CSTR models comes into play. 

This is the very topic which we will pick up in the following. The 
occurrence of different steady states of a rather simple tank reactor model 
shall be related with some results of measurement [l] for the decomposition 
of kaolin, and of limestone. 

TANK REACTOR MODEL WITH ONE REACTION OF ARBITRARY ORDER 

The elementary mechanism 

(where n, m, 1 are non-negative integers) might be interesting for many 
decomposition reactions. Let us assume that a zone, or interface, in which 
the reaction (I) proceeds, is running from the outside into a crystal of pure 
initial substance A. We regard a part of the reactive region which is cut out 
by a thin cylinder pointing from the center of the sample to its surface. 

This section of the reaction region may directly be identified with the 
bulk of a tank reactor (cf. Fig. 1). In some cases, the region corresponding to 
the bulk of the tank might also reach up to the surface of the sample. At 
exterior heating, the section of the reaction region will be supplied with an 
integral heat flux lo. By the motion of the tank towards the center of the 
crystal, a convective flux 1, of fresh substance A into the tank will occur, 
and fluxes I, and 1w, of C or W, will stream out. The flux Iw is not purely 
convective. It will contain a contribution due to outward diffusion of W. 

Fig. 1. Scheme of modelling of decomposition processes. A section of the reaction zone (or 
surface) is regarded as a tank reactor with a homogenous bulk (CSTR) which moves through 
the sample. IA, I, and Zw are the flows of components, A, C and W; IQ is the flow of heat. 
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Another way of interpreting a CSTR model in which reaction (1) proceeds 
is to take it in a transposed, or symbolic meaning for the overall transforma- 
tion occurring in a spatially closed two-fold connected 3-dimensional reac- 
tion region, or for the transformation on a closed 2-dimensional reaction 
surface. In either case of interpretation, the ODES of the CSTR model with 
the elementary reaction (1) may be written in the form 

d= -nka”+J, 

C=mka”-JC 

ti=lka”-J, (2) 

c,f = nka”Ah + Ja 

Here a, c and w are particle number densities per unit volume (mol cmp3), 
or per unit surface (mol cm -2) of the components A, C and W, respectively, 
and T is the temperature. The heat capacity of the unity reaction region is 

denoted as cr, and Ah is the molar reaction enthalpy of eqn. (1). The 
Arrhenius ansatz 

k = z e- E/RT 
(3) 

shall be assumed for the temperature dependence of the rate coefficient k. 
The dot (e) denotes the time derivative (e) = d/dt. The quantities J, (S=A, 
C, W or Q) are the yield of the flows I, of components A, C and W, and of 
heat per unit volume, or per unit surface, respectively, in the reaction region, 
i.e. 

J, = Is/V (mol cme3 s-l) or J, = Is/F (mol cme2 .sl) (4) 

The J, are functions of the state variables a, c, w and T. These functions 
must be chosen in correspondence with the mean local conditions in the 
reaction zone, and with its boundary conditions, and obviously depend on 
the special interpretation of the reactor model. 

Expressions for J, can be obtained, if one assumes that some profiles of 
the state variables are known as solutions of the corresponding PDE 
problem at special boundary conditions. The CSTR equations can then be 
defined by averaging the various terms of the PDEs on the space variable 1 
through the reaction zone (see for example refs. 3 and 4). For instance, if a 
section of a constantly progressing reaction zone with step-like profiles 
similar to the profiles in Fig. 2 are described by a tank like that in Fig. 1, 
then the following equations can be used: 

JA = Na, J, = Lc, (5) 

Jw = M( w - pw,) J,=K(T,- T) (6) 

In this ansatz, the constant initial volume density a,, of the crystal of pure 
A, and the constant final density cf of the produced structure of C are 
introduced. The constants N and L depend on the velocity u of the reaction 
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Fig. 2. An example of concentration and temperature profiles along a coordinate axis z (or 1) 
pointing from the center of the crystal to its outer surface. This case conveniently allows to 
deduce the ODES of a CSTR model from corresponding PDEs. J, and Jw, diffusion flows 
of heat and gas through unit cross section of the exterior surface of the sample, respectively. 

zone, and of its thickness A[, viz. N = L = v/A{. The constants M and K, 
respectively, are transition numbers for the diffusion of W, and the conduc- 
tion of heat between the reaction zone and the surroundings of the crystal. 
In the surroundings, the values of the nonvanishing state variables w and T 
are w, and T,. The coefficient p characterizes the equilibrium particle 
distribution of W at the exterior surface of the crystalline substance C. 

If the steps of the profiles of the reaction zone should extend from the 
interior reaction front out to the exterior surface of the sample, the eqns. (5) 
would have to be substituted by 

JA = N( a, - u) J, = 0 (7) 

Another possibility for defining the flow rates JA and J, would be to 
assume that the particle number densities a and c in the tank reactor had 
stationary values a = const and c = const. Then, the vanishing of the left 
hand sides of the first two rate equations (2) would prescribe expressions for 
JA and J, as functions of T (cf. eqn. 3). 

DISCUSSION OF A SPECIAL CASE OF THE ODES 

Using the assumption of eqns. (3), (6) and (7), the ODES (2) obtain a 
special form in which they contain 

d= -nnze- E’RTan + N( a, - a) 

c,T = nze -E/RTa”Ah + K( T, - T) 
(8) 
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as the only simultaneous subsystem. After numerical computation of solu- 
tions a = a(t) and T = T(t) of eqns. (8) at given parameter values and given 
initial conditions, the functions c = c(t) and w = w(t) can be obtained from 
eqns. (2) by computation of integrals. 

For these computations, a transition to dimensionless quantities is useful, 
e.g., p = AhRa,/c,E, y = K/ncpza;l-‘, v = N/nza:-‘, .$ = a/a,, 9 = 
RT/E, t’ = nza;f-‘t, (‘) = d/dt’. This leads from eqn. (8) to 

,$’ = -<“e-1/9 + ~(1 - [) E ft 

$j’ = P(ne-1/8 + UC% - a> =fa 
(9) 

We ask for trajectories of eqns. (9) with E = 5 (t’) > 0 and 9 = 9( t’) > 0 at 
parameter values $e > 0, v > 0 and y > 0. If the normal case of a simple 
endothermic decomposition shall be described, we have p < 0, and if an 
exothermic reaction step is to be regarded then the condition is fi > 0. First, 
the steady states ([,, 9,) in the positive region of the phase plane of eqns. (9) 
shall be investigated. The definition ft = f, = 0 of these singular trajectories 
leads to 

~(IY~-IY)= -/3 
] 
l+~(~~-8)]‘e-1’B-F(4) 

Solutions of eqn. (10) may be obtained by graphical discussion. 

(10) 

Figure 3 illustrates schematically the endothermic case p < 0. The straight 
line which characterizes the heat transport has a negative slope. Conse- 
quently if n is odd only one steady state will exist, but if n is even, three 

Fig. 3. Schematic diagram of the graphic solution of eqn. (10) at positive v, y and & and 
negative /3. 



184 

singular points might occur. Since structural stability of the model has to be 
demanded (see [9,10]), the parameter values with two steady states must be 
excluded. At p < 0, each steady state (~,,IY~) in the region 5‘ > 0 fulfils the 
Hurwitz stability condition (see [9,10]). 

In the exothermic case, /3 > 0, the graphic solution of eqn. (10) is similar 
to that shown in Fig. 3. A picture for n = 1 has already been presented in 
ref. 11 (example 1.9.1). In this case, three steady states may occur not only 
when n is even, but also when n is odd. 

Second, we ask for self-oscillating solutions 5 = <(t’) and 9 = 9( t’) of 
eqns. (9). Their existence can be excluded, if /3 < 0. This follows by applica- 
tion of the Bendixon negative criterion (see, for example [9,10]). In the 
exothermic case, p > 0, limit cycles of eqns. (9) exist at special parameter 
values as show by various investigations (e.g. refs. 12 and 13). These papers 
use a slightly different dimensionless form of eqns. (8) for n = 1. They 
include examples of numerical computation of self-oscillating trajectories. 

APPLICATIONS TO SOME DECOMPOSITION REACTIONS 

Measurements of the dependence of the temperature, T,, of the maxi- 
mum overall decomposition rate on the sphere diameter, 2, of samples of 
kaolin and limestone [l], (see Figs. 2 and 4 and Tables 2 and 3 in ref. 1) have 
indicated two different branches of T, - 9 plots. At large diameters, 2, 
these results show that the values of T, are disproportionally large when 
compared with the values of T, resulting with smaller samples. 

For an explanation of this fact, the multistable special case of our model 
(2) which is given by eqns. (8) with p < 0, and with bimolecular collisions 
n = 2 seems to be appropriate. It is seen that the heat transition number K, 
or y, of the effective reaction zone of small samples is much greater than 
that of larger samples. At high values of y, the straight line of Fig. 3 
becomes very steep, and a steady state which can approximate a quasi-sta- 
tionary decomposition process will have a high temperature 9 = IY~. On the 
other hand, at small values of y at which three steady states may occur, the 
decomposition process can go on at the steady state with the smallest value 
9 = as. For intermediate sizes of samples, a bifurcation via the above 
mentioned structurally unstable regime of the degenerate case with two 
steady states has to be expected. This bifurcation explains the gap of the 
T, - 9 measurements in ref. 1. 

At first sight, the self-oscillating solutions of the model (eqns. 2) with 
eqns. (3,5,7) based on the reaction (1) seem also to be applicable to an 
explanation of the oscillations of the overall rate at the decomposition of 
gypsum (see ref. 1, Fig. 5, or its corrected copy in ref. 3). One might 
suppose, for example, that eqns. (9) refer to an appropriately chosen single 
step of the elementary reactions which had been proposed in ref. 4. How- 
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ever, we must observe that the only exothermic step of these elementary 
mechanisms is 2CaS0, + H,O + 2CaS0, . l/2 H,O. This equation cannot, 
however, be identified with (1) even if the symbols are renamed. Conse- 
quently, the model (eqns. 2) with eqns. (3) (5) and (7) is inapplicable to the 
description of the oscillations in Fig. 5 of ref. 1. 

CONCLUSIONS 

The consideration of a special case of ODES has indicated that the model 
(eqns. 2) with n = 2 may be adopted to describe the decomposition of kaolin 
and of limestone [l]. This supports the conclusion that these two decomposi- 
tions proceed by second order collisions. Since our model proved to be 
inapplicable to oscillating endothermic reactions, we must conclude that the 
decomposition of gypsum ([l], Fig. 5) cannot proceed via a simple elemen- 
tary mechanism of the type (1). 

These statements are purely qualitative. However, the purpose of the 
method using CSTR models is not only to provide qualitative explanations 
of decomposition reactions, but also to give a quantitative description of 
them. Of course, this would require one to say which interpretation of the 
model should be chosen, and to include exact information on the geometric 
and other data in the modelling. Furthermore, the time evolution of trajecto- 
ries of the ODES of the model would have to be investigated numerically. In 
doing this it must be observed that the trajectories depend on data such as 
initial crystal dimensions, initial crystal state, transport coefficients, rate 
coefficients, and heating rates. These data are involved in the initial condi- 
tions, in values of the parameters, and, from a strict point of view, even in 
time dependent functions appearing in the ODES. 
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